博客
关于我
AcWing 853. 有边数限制的最短路
阅读量:434 次
发布时间:2019-03-06

本文共 963 字,大约阅读时间需要 3 分钟。

Bellman-Ford是一种基于迭代思想的最短路径算法,采用暴力搜索的方式,而非贪心算法。它的核心思想是通过多次松弛边(即更新最短路径距离)来逐步逼近最短路径的解。在每次迭代中,所有的边都会被检查,如果发现某条边可以通过当前已知的最短路径产生更短的路径,则更新相应的最短路径距离。

Bellman-Ford算法的实现思路

Bellman-Ford算法的主要实现思路如下:

  • 初始化距离数组:将所有节点的初始距离设置为无穷大,除了起点(通常是节点1),其距离设为0。
  • 迭代松弛:在每次迭代中,首先将当前距离数组的值复制到一个临时数组中。如果某条边能够通过当前距离数组中的值产生更短的路径,则更新相应的最短路径距离。
  • 多次迭代:重复上述过程多次(具体次数由参数k决定),每次迭代都有可能发现新的更短路径。每次迭代实际上相当于在图中增加一个松弛过程。
  • 代码实现细节

  • 数据结构

    • head[N]:用于记录每个节点的边的头指针。
    • e[M]w[M]:分别表示边的目标节点和权重。
    • net[M]:用于存储每条边的起点的头指针。
    • cnt:记录边的数量。
    • dis[N]:存储当前节点到起点的最短路径距离。
    • temp[N]:在每次迭代中存储上一轮的最短路径距离。
  • 添加边的功能

    • addedge(x, y, z):添加一条从节点x到节点y的边,权重为z。并更新该节点x的头指针。
  • Bellman-Ford算法核心逻辑

    • 初始化距离数组。
    • 在k次迭代中,每次迭代先复制当前距离数组到临时数组temp
    • 遍历所有节点x,然后通过头指针遍历所有与x相关的边,检查是否存在更短的路径。
    • 如果发现更短的路径,则更新相应的距离数组。
  • 算法特点

    • 迭代性:Bellman-Ford算法通过多次松弛边来逐步逼近最短路径解。每次迭代都有可能发现新的更短路径。
    • 适用场景:Bellman-Ford算法适用于图中存在负权重边或不确定权重的场景,因为它不依赖于图中边的权重符号。
    • 时间复杂度:Bellman-Ford算法的时间复杂度为O(n*m),其中n是节点数,m是边数。每次迭代需要遍历所有边,而每次松弛操作的时间复杂度为O(m)。

    Bellman-Ford算法虽然不如Dijkstra算法高效,但在某些特殊场景下(如存在负权重边或不确定权重的图)依然是可靠的选择。

    转载地址:http://dijyz.baihongyu.com/

    你可能感兴趣的文章
    MySQL 聚簇索引&&二级索引&&辅助索引
    查看>>
    Mysql 脏页 脏读 脏数据
    查看>>
    mysql 自增id和UUID做主键性能分析,及最优方案
    查看>>
    Mysql 自定义函数
    查看>>
    mysql 行转列 列转行
    查看>>
    Mysql 表分区
    查看>>
    mysql 表的操作
    查看>>
    mysql 视图,视图更新删除
    查看>>
    MySQL 触发器
    查看>>
    mysql 让所有IP访问数据库
    查看>>
    mysql 记录的增删改查
    查看>>
    MySQL 设置数据库的隔离级别
    查看>>
    MySQL 证明为什么用limit时,offset很大会影响性能
    查看>>
    Mysql 语句操作索引SQL语句
    查看>>
    MySQL 误操作后数据恢复(update,delete忘加where条件)
    查看>>
    MySQL 调优/优化的 101 个建议!
    查看>>
    mysql 转义字符用法_MySql 转义字符的使用说明
    查看>>
    mysql 输入密码秒退
    查看>>
    mysql 递归查找父节点_MySQL递归查询树状表的子节点、父节点具体实现
    查看>>
    mysql 里对root及普通用户赋权及更改密码的一些命令
    查看>>